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Outage Behavior of Integer Forcing With
Random Unitary Pre-Processing

Elad Domanovitz and Uri Erez, Member, IEEE

Abstract— Integer forcing is an equalization scheme for the
multiple-input multiple-output communication channel that has
been demonstrated to allow operating close to capacity for
“most” channels. In this paper, the measure of “bad” channels
is quantified by considering a compound channel setting, where
the transmitter communicates over a fixed channel but knows
only its mutual information. The transmitter encodes the data
into independent streams, all taken from the same linear code.
The coded streams are transmitted after applying a unitary
transformation. At the receiver side, integer-forcing equalization
is applied, followed by standard single-stream decoding. Consid-
ering pre-processing matrices drawn from a random ensemble,
outage corresponds to the event that the target rate exceeds the
achievable rate of integer forcing for a given channel matrix. For
the case of the circular unitary ensemble, an explicit universal
bound on the outage probability for a given target rate is derived
that holds for any channel in the compound class. The derived
bound depends only on the gap-to-capacity and the number of
transmit antennas. The results are also applied to obtain universal
bounds on the gap-to-capacity of multiple-antenna closed-loop
multicast, achievable via linear pre-processed integer forcing.

Index Terms— Integer forcing, MIMO communication, unitary
precoding.

I. INTRODUCTION

THE Multiple-Input Multiple-Output (MIMO) Gaussian
channel is central to modern communication and has been

extensively studied over the past several decades. Nonetheless,
while the capacity limits, under different assumptions on the
availability of channel state information, are well understood,
the design of low-complexity communication schemes that
approach these limits still poses challenges in some scenarios.

For a static channel and a point-to-point closed-loop
setting, capacity may be approached without much difficulty
by employing an architecture that decouples coding and
modulation. That is, one may use “off-the-shelf” codes in con-
junction with linear pre- and post-processing based on matrix
decompositions. For instance, one may use the singular-value
decomposition (SVD) to transform the channel into parallel
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scalar additive white Gaussian noise (AWGN) channels, over
which standard codes may be employed [1]. Alternatively,
standard scalar codes may be used in conjunction with the Q R
decomposition and successive interference cancellation (SIC),
see, e.g., [2]. Coding for MIMO channels in an ergodic fading
environment is more involved but has also been successfully
addressed. See, e.g., [3].

In contrast, we address the problem of coding over a
compound MIMO channel. More specifically, the focus of
this paper is on static (and frequency-flat) MIMO channels
where the transmitter only knows (or may only utilize its
knowledge of) the mutual information of the channel.

The design of a practical coding scheme for such a com-
pound MIMO channel scenario was addressed in [4] where
an architecture employing space-time linear pre-processing
(that is independent of the channel) at the transmitter side
and integer-forcing (IF) equalization at the receiver side was
proposed. It was shown that such an architecture universally
achieves the MIMO capacity up to a constant gap, provided the
space-time pre-processing satisfies the non-vanishing determi-
nant (NVD) criterion [5]. While this result is encouraging as
it points to the robustness of the IF scheme, the derived gap
is very large and calls for further work.

In the present work, we study the performance of IF where
random unitary linear pre-processing is performed over the
spatial dimension only. Rather than aiming at guaranteeing
successful transmission, we study the outage probability of
the scheme.1 We focus attention to pre-processing matrices
drawn from the isotropic (circular) unitary ensemble as this
ensures that all channels having the same singular values, will
have the same outage probability.

It is worth noting that the random pre-processing opera-
tion serves the purpose of quantifying the measure of “bad”
channels for IF receivers. We further note that the receiver
considered is the standard one of [8] but whereas the results
of [8] deal with distributed transmit antennas (i.e., with no
encoding across the transmit antennas), in the present paper
joint (unitary) pre-processing is assumed. While this may
appear to preclude a distributed setting, some important statis-
tical scenarios are in fact covered by the model. Specifically,
in the case of a channel matrix whose entries are i.i.d. Gaussian
random variables, the random unitary transformation assumed
in the analysis to follow is in reality performed by nature,
as discussed in Section III-C2 below.

1This approach is similar to that taken in [6] and [7] with respect to other
transmission schemes.
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The outage probability in the considered setting thus cor-
responds to a scheme outage.2 Namely, it is the probability
that a random linear pre-processing matrix results in an
effective channel for which the rate achievable with an IF
receiver is smaller than the target rate. In order to provide
universal performance guarantees, we study the worst-case
outage probability with respect to all possible singular value
combinations corresponding to a given mutual information.
Thus, the guaranteed performance does not depend on channel
statistics.

We note that the performance of a coding scheme over
the compound channel is a strong measure of its robustness.
Clearly, performance guarantees for the compound channel
immediately translate to guarantees for a statistical channel
model (as explained in the next section). To the best of our
knowledge, IF is the first practical scheme for which (provable)
universal bounds are known for the MIMO channel.

We begin by empirically observing that space-only linear
pre-processed IF (P-IF) has greatly improved performance,
in terms of worst-case outage probability, compared to stan-
dard linear equalization. We then derive an explicit bound on
the performance of P-IF that depends only on the number
of transmit antennas and the gap-to-capacity, where moderate
gaps suffice to guarantee a small outage probability.

As another example of an application of the results, we use
the probabilistic method to obtain guarantees on the number
of users that can be supported in closed-loop MIMO multicast
(guaranteeing no outage occurs) as a function of the gap-to-
capacity, when using linear pre-processed IF.

The paper is organized as follows. Section II defines
the channel model of interest and formulates the problem
described above. Section III provides background on the
integer-forcing receiver as well as its use in conjunction
with linear pre-processing. Section IV derives a universal
upper bound for the outage probability of randomly lin-
ear pre-processed IF over the compound MIMO channel;
tighter bounds for the specific case of two transmit antennas
and a receiver employing a successive interference cancella-
tion (SIC) variant of IF are also derived. Section V describes
the application of the derived bounds to a close-loop MIMO
multicast setting.

II. CHANNEL MODEL AND PROBLEM FORMULATION

A point-to-point (complex) MIMO channel is considered
where the transmitter is equipped with Nt antennas and
the receiver is equipped with an arbitrary number (Nr ) of
antennas. Thus, a channel is described by the relation

yc = Hcxc + zc, (1)

where xc ∈ CNt is the channel input vector, yc ∈ CNr is
the channel output vector, Hc is an Nr × Nt complex channel
matrix, and zc is an additive noise vector of i.i.d. unit variance
circularly-symmetric complex Gaussian random variables.3

2We use the term “scheme outage” as opposed to “channel outage.”
Specifically, in the considered setting, the channel is known to have sufficient
mutual information to support the chosen target transmission rate.

3We denote all complex variables with c to distinguish them from their
real-valued representation.

The input vector xc is subject to the power constraint4

E(x H
c xc) ≤ Nt · SNR. (2)

We assume that the channel is fixed throughout the whole
transmission of a codeword.

For a given input covariance matrix Qc, satisfying the power
constraint Tr(Qc) ≤ Nt SNR, the mutual information of the
channel (1) is maximized by a Gaussian input, and is given
by

C = log det
(

INr ×Nr + HcQcHH
c

)
. (3)

When it comes to designing transmission strategies, without
loss of generality we may assume that Q = I (isotropic
transmission). Namely, we may “absorb” Q into the channel
matrix by replacing Hc in (3) with H̄c = HcQ1/2 (and with
abuse of notation, we omit the bar). Similarly, we may set
SNR = 1. Hence, we may rewrite (3) as

C = log det
(

INr ×Nr + HcHH
c

)

= log det
(

INt ×Nt + HH
c Hc

)
. (4)

We define the set

H(C; Nt ) =
{

Hc : log det
(

INt ×Nt + HH
c Hc

)
= C

}
(5)

of all channel matrices Hc with Nt transmit antennas and an
arbitrary number of receive antennas, having the same WI
mutual information C .

The corresponding compound channel model is defined
by (1) with the channel matrix Hc arbitrarily chosen from
the set H(C; Nt ). The matrix Hc that was chosen by nature
is revealed to the receiver, but not to the transmitter. Clearly,
the capacity of this compound channel is C , and is achieved
with an isotropic Gaussian input.

We note that the assumption that Nr is arbitrary
(i.e., universality) comes at a price. Specifically, restricting
the number of receive antennas to a fixed number (more
specifically to a value Nr < Nt ) may be leveraged to obtain
improved performance and bounds since this amounts to
limiting the set over which we take the worst-case channel.
Nonetheless, as we will see, integer forcing behaves well even
in the considered universal setting.

Employing the IF receiver allows approaching C for “most”
but not all matrices Hc ∈ H(C; Nt ). We quantify the measure
of the set of bad channel matrices by considering outage
events, i.e., those events where integer forcing fails even
though the channel has sufficient mutual information. More
broadly, for a given coding scheme, denote the achievable
rate for a given channel matrix Hc as Rscheme(Hc). Then,
given a target rate R < C and a channel Hc ∈ H(C; Nt ),
the scheme is in outage when Rscheme(Hc) < R. For the
case of integer forcing, the explicit expression for RIF(Hc)
is recalled in Section III-A.

Since applying a linear pre-processing matrix Pc results in
an effective channel Hc ·Pc, it follows that the achievable rate
of a transmission scheme over this channel is Rscheme(Hc ·Pc).

4We denote by [·]T , transpose of a vector/matrix and by [·]H , the Hermitian
transpose of a vector/matrix.
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When Pc is drawn at random, the latter rate is also random.
The worst-case (WC) scheme outage probability is defined in
turn as

PWC
out,scheme (C, R) = sup

Hc∈H(C;Nt )

Pr (Rscheme(Hc · Pc) < R) ,

(6)

where the probability is over the ensemble of linear pre-
processing matrices. The goal of this paper is to quantify the
tradeoff between the transmission rate R and the worst-case
outage probability of integer forcing PWC

out,IF (C, R).
Remark 1: Assume that Hc is modeled as having a proba-

bility distribution over the compound class H(C; Nt ). In such
a case, the outage probability is given by

EHc [Pr (Rscheme(Hc · Pc) < R | Hc)] (7)

where the probability is with respect to Pc (given Hc) and the
expectation is with respect to the distribution over H(C; Nt ).

Note that in (6), we take the supremum over the entire
compound class rather than averaging over a given distribu-
tion. Since the average is always smaller than the supremum,
it follows that (6) universally upper bounds (7). That is,
the bound holds for any distribution over H(C; Nt ).

Remark 2: Assume that Hc is modeled as having any
probability distribution (not restricted to the compound class
H(C; Nt )). In such a case, the outage probability can be
expressed as

E

[
EHc

[
Pr (Rscheme(Hc · Pc) < R | Hc)

∣∣∣ C
]]

(8)

where again, the probability is with respect to Pc, the inner
expectation is with respect to the marginal distribution of
Hc given the WI-MI C, while the outer one is with respect
to C. Thus, in order to bound the scheme outage probability,
it suffices to know only the distribution of the WI-MI mutual
information C. Namely, from (6) we have that the outage
probability will be no greater than

E

[
PWC

out,scheme (C, R)
]

(9)

where the expectation is over C.

III. INTEGER-FORCING BACKGROUND

A. Single-User Integer-Forcing Equalization

In [8], a receiver architecture scheme named “integer forc-
ing” was proposed which we briefly recall. For our purposes,
it will suffice to only state the achievable rates of IF and a
high-level operational description of its elements. The reader is
referred to [8] for the derivation, details and proofs, and further
to [9] and [10], and references therein for implementation
considerations.

We follow the derivation of [8] and describe integer forcing
over the reals. Channel model (1) can be expressed via its
real-valued representation as[

Re(yc)
Im(yc)

]

︸ ︷︷ ︸
y

=
[

Re(Hc) −Im(Hc)
Im(Hc) Re(Hc)

]

︸ ︷︷ ︸
H

[
Re(xc)
Im(xc)

]

︸ ︷︷ ︸
x

+
[

Re(zc)
Im(zc)

]

︸ ︷︷ ︸
z

.

(10)

This real-valued representation is used in the sequel to derive
performance bounds for the complex channel Hc. Note that
the dimensions of H are 2Nr × 2Nt .

It is assumed that information bits are fed into 2Nt encoders,
each of which uses the same linear code that is designed for
an AWGN channel.5 The latter produces 2Nt channel inputs
(for example, xm for the m’th antenna).6 At the receiver,
a linear equalization matrix B ∈ R

2Nt ×2Nr is applied. It is
easiest to understand IF by first describing its zero-forcing
variant. In this case, B is designed so that the resulting
equivalent channel A = BH is such that A ∈ Z2Nt ×2Nt

is a full-rank integer matrix. In a practical implementation,
it may be necessary for the matrix to be full-rank over a finite
field Zp (where p is prime) over which the code is defined.
Nonetheless, by taking p large enough, it suffices for A to be
invertible over the reals (see [11, Lemma 2, Appendix A]; see
also [10]). This ensures that the output of the channel (without
noise) after applying a modulo operation is a valid codeword.

Each of the equalized streams is next passed to a standard
(up to the additional element of a modulo operation) AWGN
decoder which tries to decode a linear combination of code-
words, whose coefficients correspond to a row of A. Finally,
after the noise is removed, the original messages are recovered
by applying the inverse of A. Thus, for IF equalization to
be successful, decoding over all 2Nt subchannels should be
successful and the worst subchannel constitutes a bottleneck.
The operation of the receiver is depicted in Figure 1 (where at
this stage the linear pre-processing matrix can be considered
as the identity matrix, i.e., P = I).

When using minimum mean square error (MMSE) equal-
ization, rather than zero-forcing, the linear equalizer takes the
form

B = AHT
(

I + HHT
)−1

, (11)

and the input to the m’th decoder is

yeff,m = vm + zeff,m (12)

where

zeff,m = (bT
mH − aT

m)x + bT
m z. (13)

Here, aT
m and bT

m are the m’th row of A and B respectively.
We can define the effective SNR at the m’th subchannel as

SNReff(am) =
(

aT
m(I + HT H)−1am

)−1
, (14)

and the effective rate that can be achieved at the m’th sub-
channel as

RIF(H; am) = 1

2
log (SNReff (am))

= −1

2
log
(

aT
m(I + HT H)−1am

)
. (15)

Note that the rate expression (15) is negative when
SNReff (am) < 1. Hence, the achievable rate should be
understood as the maximum between (15) and zero.

5The effect of the chosen code on the overall performance of IF is discussed
in [4].

6For simplicity of notation the time index is suppressed as the block length
plays no role in our description. Of course, to approach capacity, one needs
to use a long block.
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Fig. 1. Linear pre-processed-IF / Linear pre-processed IF-SIC scheme. Feedback in the receiver is active only when SIC is used.

By [8, Th. 3], transmission with IF equalization can achieve
any rate satisfying R < RIF(H) where

RIF(H)

= max
A∈Z

2Nt ×2Nt
det A �=0

min
m=1,...,2Nt

2Nt · RIF(H; am)

= max
A∈Z

2Nt ×2Nt
det A �=0

min
m=1,...,2Nt

2Nt
1

2
log (SNReff(am))

= max
A∈Z

2Nt ×2Nt
det A �=0

min
m=1,...,2Nt

Nt log

(
1

aT
m(I + HT H)−1am

)

= Nt log

⎛
⎜⎝ min

A∈Z
2Nt ×2Nt

det A �=0

max
m=1,...,2Nt

(
aT

m(I + HT H)−1am

)
⎞
⎟⎠

−1

= −Nt log

⎛
⎜⎝ min

A∈Z
2Nt ×2Nt

det A �=0

max
m=1,...,2Nt

(
aT

m(I + HT H)−1am

)
⎞
⎟⎠ .

(16)

The achievable rate of IF may also be described via the
successive minima of a lattice associated with the channel
matrix as we now recall. Any channel can be described via
its SVD

H = U�VT . (17)

Using (17), the following decomposition is readily obtained

(I + HT H)−1 = VD−1VT , (18)

where D = I + �T �. It follows that (15) may be rewritten
as [8, Th. 4]

RIF(H; am) = −1

2
log
(
‖D−1/2VT am‖2

)

� Rm,IF(D, V), (19)

where in the last equation the dependence on the choice of A is
left implicit. Let � be the lattice spanned by G = D−1/2VT and
recall the definition of successive minima.

Definition 1: Let �(G) be a lattice spanned by the full-
rank matrix G ∈ RK×K . For k = 1, ..., K , we define the
k’th successive minimum as

λk(G) � inf {r : dim (span (�(G) ∩ BK (r))) ≥ k} (20)

where BK (r) = {
x ∈ RK : ‖x‖ ≤ r

}
is the closed ball of

radius r around 0. In words, the k-th successive minimum
of a lattice is the minimal radius of a ball centered around 0
that contains k linearly independent lattice points.

Thus, the maximal rate achievable with integer-forcing
equalization (16) may be written as

RIF(H) = RIF(D, V)

= −Nt log
(
λ2

2Nt
(�)
)

= Nt log

(
1

λ2
2Nt

(�)

)
. (21)

B. Integer-Forcing Equalization With Successive
Interference Cancellation

We also consider a version of IF equalization incorporating
successive interference cancellation. We will refer to it as
IF-SIC.7 We state only the achievable rates of IF-SIC and an
operational description of its elements. The reader is referred
to [12] for the derivation, details and proofs.

For a given choice of integer matrix A, let L be defined by
the following Cholesky decomposition

A
(

I + HT H
)−1

AT = AVD−1VT AT

= LLT . (22)

7We note that IF-SIC may in general allow using different rates per stream
as stated in [10, Th. 5]. We nevertheless assume throughout that all streams
are encoded via an identical linear code and hence have the same rate.
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Denoting by �m,m the diagonal entries of L, IF-SIC can
achieve (see [12]) any rate satisfying R < RIF−SIC(H) where

RIF−SIC(H) = RIF−SIC(D, V)

= 2Nt · 1

2
max

A
min

m=1,...,2Nt
log

(
1

�2
m,m

)
, (23)

and the maximization is over all full-rank 2Nt × 2Nt integer
matrices.8

We describe the operation of the IF-SIC receiver,
adopting the nomenclature of [12]. We note that we
describe the MMSE-GDFE version of IF-SIC, as given in
[12, Appendix A], rather than its noise-prediction variant.
First, calculate:

1) The optimal integer matrix A, i.e., the matrix
maximizing (23).

2) The covariance matrix (22) of the effective noise
(see (14)) that arises when using the equalization
matrix B as given in (11).

3) The optimal SIC matrix S as:

S = diag(�11, . . . , �M M ) · L−1. (24)

4) The optimal combined linear front-end processing
matrix:

B̃ = SB

= SAHT
(

I + HHT
)−1

. (25)

The operation of the receiver is depicted in Figure 1 where
the feedback depicted in the receiver is now active, and where
now B is to be understood as B̃. Note that this change
of linear post-processing is essential to guarantee that the
resulting noise variance is minimized. The outputs of decoders
1, . . . , m −1 are multiplied by Sm,1, . . . , Sm,m−1, respectively,
and are then subtracted from the input to decoder m, thereby
performing SIC.

C. Linear Pre-Processed Integer Forcing

1) Motivating Example: Performance Comparison of Linear
MMSE and IF Receivers: As a motivating example, following
Remark 1, we compare the performance of linear MMSE and
IF equalizers over a specific ensemble of channels defined over
H(C = 8, Nt = 2). Specifically, we consider a “normalized”
2 × 2 Rayleigh fading ensemble, where the capacity is fixed
to C = 8 bits. The ensemble is generated by drawing a
2 × 2 channel matrix with i.i.d. circularly symmetric complex
Gaussian entries and then scaling the matrix (multiplying it by
a value that we find by numerical search) such that the mutual
information equals 8 bits.9

Figure 2 depicts the probability density function of the rate
achieved for this ensemble when using linear MMSE and IF
receivers. Since linear MMSE equalization is a special case

8We note that since we choose to work with equal-rate streams, the con-
straints on the achievable rate tuples of IF with SIC, as stated in [12, Th. 2],
play no role in the present work.

9Note that in this ensemble, the probability of channels corresponding to
Nr �= 2 is zero.

Fig. 2. Approximate probability density functions (based on Monte Carlo
simulation) of the rates achievable with the linear MMSE receivers over a
Rayleigh 2 × 2 MIMO channel normalized to C = 8 bits.

of IF (setting A = I), as expected IF displays improved
performance.

The real strength of IF lies however in the behavior of
the “tail”. For conventional linear equalizers, bad channels
correspond to ill-conditioned matrices. An extreme case is the
following channel

Hc,WORST =
√

28 − 1

[
1 0
0 0

]
. (26)

In this case, the data stream sent from the second antenna is
completely lost when transmitted over the channel. Clearly,
in this example, no receiver (including maximum likelihood)
will be able to recover the lost data stream and thus the
achievable rate of both linear and IF equalization is also zero.

Consider now the channel Hc,WORST · Pc where Pc is a
unitary matrix. As the singular values remain unchanged, it is
clear that the channel remains ill-conditioned and hence a
linear receiver (not allowing for a modulo operation) will
still suffer from poor performance. On the other hand, the IF
receiver performs well even over ill-conditioned MIMO chan-
nels, and in fact, the performance of the IF receiver for the
channel (26) is good for “most” pre-processing matrices as
illustrated next.

2) Linear Pre-Processing Ensemble and Resulting
Performance: The transmission scheme we analyze consists of
applying a unitary pre-processing matrix at the transmitter and
IF equalization (either with or without SIC) at the receiver,
as depicted in Figure 1. Applying linear pre-processing may
be viewed as generating a “virtual” channel H̃c = HcPc

over which transmission takes place. We restrict ourselves to
unitary linear pre-processing matrices in order to keep the
transmission power unchanged.

Throughout this paper, we assume that the linear pre-
processing matrix Pc is drawn from what is referred to as the
“circular unitary ensemble” (CUE). The ensemble is defined
by the unique distribution on unitary matrices that is invariant
under left and right unitary transformations [13, Th. 8.3].
In other words, the ensemble amounts to inducing the Haar
measure on the unitary group of degree Nt .10

10An explanation on how to generate matrices belonging to the CUE can
be found in, e.g., [14].
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Fig. 3. Approximate probability density functions (based on Monte Carlo
simulation) of the rates achievable with the linear MMSE and IF receivers
over the channel (26), when applying a random linear pre-processing matrix
drawn from the CUE.

Remark 3: While in general the transformation Pc implies
joint processing at the encoders, we note that in some natural
statistical scenarios, including that of an i.i.d. Rayleigh fading
environment, the random transformation is actually performed
by nature.11 In such settings, our analysis holds even when the
transmitters are distributed as in a multiple-access scenario.

Figure 3 compares the achievable rates of the linear MMSE
and IF receivers over the singular channel (26), when applying
random CUE pre-processing. As can be seen, the achievable
rate of IF is high for most pre-processing matrices, achieving
a large fraction of C with high probability.

3) Properties of CUE Pre-Processing: The SVD of the
effective channel resulting from pre-processing is given by

HcPc = Uc�cVH
c Pc. (27)

Since VH
c Pc is equal in distribution to Pc, for the sake

of computing outage probabilities, we may simply assume
that VH

c (and also Vc) is drawn from the CUE.
We note that the eigenvalue decomposition of the equivalent

real channel can be written as

(I + HT H)−1 = VD−1VT , (28)

where

V =
[

Re(Vc) −Im(Vc)
Im(Vc) Re(Vc)

]
. (29)

and

D =
[

Dc 0
0 Dc

]
. (30)

Further, the rates of IF, with or without SIC, for such a channel
come in pairs.

Denoting the gap-to-capacity by �C , we may therefore
rewrite the worst-case IF outage probability as defined in (6)
as

PWC
out,IF (C, C − �C) = sup

D∈D(C;2Nt )

Pr (RIF(D, V) < C − �C)

(31)

11This follows since the left and right singular vector matrices of the an
i.i.d. Gaussian matrix Hc are equal to the eigenvector matrices of the Wishart
ensembles HcHH

c and HH
c Hc, respectively. The latter are known to be CUE

(Haar) distributed. See, e.g., [15, Ch. 4.6].

where we define D(C; 2Nt ) as the set of all 2Nt ×2Nt diagonal
matrices D, with diagonal elements appearing in pairs, such
that det (D) = 2C .

Another property we use in the sequel is the following.
Denote by dc,i the diagonal entries of Dc. Then

2C = 2log det
(
INt ×Nt +HH

c Hc
)

= det
(

VcDcVH
c

)

=
Nt∏

i=1

dc,i . (32)

Denoting by di the diagonal entries of D, we similarly have

2C = 2
1
2 log det

(
INt ×Nt +HT H

)

=
√

det
(
V · D · VT

)

=
2Nt∏
i=1

√
di . (33)

From (30) we observe that since the singular values of the real
channel come in pairs, we have

2Nt∏
i=1

√
di =

Nt∏
i=1

dc,i = 2C . (34)

We denote dmin = min
i

di and dmax = max
i

di .

The following lemma will prove useful in characterizing
the performance of CUE pre-processed IF. It relates the
outage probability of CUE pre-processed IF to that arising
when the pre-processing is performed using the circular real
ensemble (CRE).12

Lemma 1: Let O be a real 2Nt × 2Nt matrix drawn from
the CRE. Further, let a be a 2Nt × 1 vector of integers. When
applying a random complex linear pre-processing matrix Vc

that is drawn from the CUE (inducing a real-valued orthog-
onal pre-processing matrix V), we have that

∥∥D1/2Va
∥∥ and∥∥D1/2Oa

∥∥ are equal in distribution.
Proof: See Appendix A. �

IV. BOUNDS ON THE OUTAGE PROBABILITY OF CUE
PRE-PROCESSED INTEGER-FORCING

A. Derivation of Upper Bounds

Define the dual lattice �∗ which is spanned by the matrix

(GT )−1 = D1/2VT . (35)

Recall that the rate of IF is given by (21). Now, the successive
minima of � and �∗ are related by [16, Th. 2.4]

λ1(�
∗)2λ2Nt (�)2 ≤ 2Nt + 3

4
γ̄ 2

2Nt
, (36)

where γ̄2Nt is a “monotonized” Hermite’s constant as
defined next.13 Hermite’s constant is known only for

12The CRE is defined analogously to the CUE for the case of real ortho-
normal matrices. That is, the ensemble is defined by the unique distribution
on orthonormal matrices that is invariant under left and right orthonormal
transformations.

13In [17, Th. 2.1], another bound for the relation between the successive
minima of � and �∗ is given. This bound is tighter for very large dimensions
(it increases with n2, whereas (36) increases with n3). However, (36) has better
constants and the cross between these expressions occurs only at n = 254.
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dimensions 1 − 8 and 24. Since it has been never proved that
γ2Nt is monotonically increasing, we define

γ̄2Nt = max {γi : 1 ≤ i ≤ 2Nt } . (37)

The tightest known upper bound for Hermite’s constant,
as derived in [18], is

γ2Nt ≤
(

2

π

)
	 (2 + Nt )

1/Nt . (38)

Since this is an increasing function of Nt , it follows that γ̄2Nt

is smaller than the r.h.s. of (38).14 Combining the latter with
the exact values of the Hermite constant for dimensions for
which it is known, we may lower bound the achievable rates
of IF via the dual lattice as follows

RIF(D, V) ≥ Nt log

(
λ2

1(�
∗)

α(Nt )

)
, (39)

where

α(Nt ) =
{

2Nt +3
4 γ 2

2Nt
, Nt = 2, 3, 4, 12

2Nt +3
4

( 2
π 	 (2 + Nt )

1/Nt
)2

, otherwise.
(40)

Hence,

Pr (RIF(D, V) < C − �C)

≤ Pr

(
Nt log

(
λ2

1(�
∗)

α(Nt )

)
< C − �C

)

= Pr
(
λ2

1(�
∗) < 2

C−�C
Nt α(Nt )

)
. (41)

The next lemma provides an upper bound on the outage
probability as a function of the gap-to-capacity �C , the capac-
ity C , and dmin (as well as the number of transmit antennas).
Denote

A(β, d; 2Nt ) �
{

a ∈ Z
2Nt : 0 < ‖a‖ <

√
β

d

}
. (42)

Lemma 2: For any complex Gaussian MIMO channel with
Nt transmit antennas and with white-input mutual informa-
tion C, i.e., D ∈ D(C; 2Nt ), and for Vc drawn from the CUE
(inducing a real-valued orthogonal pre-processing matrix V),
the outage probability of integer forcing is upper bounded by

Pr (RIF(D, V) < C − �C)

≤
∑

a∈A(β,dmin;2Nt )

2Nt

(
2

C−�C
Nt α(Nt )

)Nt −1/2

‖a‖2Nt −12C 2√
dmin

, (43)

where

β = 2
C−�C

Nt α(Nt ). (44)

Remark 4: The summation in (43) may be greater than 1 for
certain values of C and �C. Obviously, one may take the
minimum between this lemma and 1 when bounding the outage
probability.

Proof: For a given β > 0, let us upper bound the prob-
ability Pr

(
λ2

1(�
∗) < β

)
or equivalently Pr

(
λ1(�

∗) <
√

β
)
.

14In the sequel we use the known values of Hermite’s constant when
possible, i.e. for Nt = 2, 3, 4. For other dimensions, we use this bound.

Fig. 4. Illustration of the geometric objects appearing in (50).

Noting that the event
{
λ1(�

∗) <
√

β
}

is equivalent to the
event

⋃

a∈Z2Nt \{0}

{
||D1/2Va|| <

√
β
}

(45)

and applying the union bound gives

Pr
(
λ1(�

∗) <
√

β
)

≤
∑

a∈Z2Nt \{0}
Pr
(
‖D1/2Va‖ <

√
β
)

=
∑

a∈A(β,dmin;2Nt )

Pr
(
‖D1/2VT a‖ <

√
β
)

, (46)

where the equality in (46) follows since whenever
‖a‖ · √dmin ≥ √

β, we have that Pr
(‖D1/2Va‖ <

√
β
) = 0.

Let S denote the unit sphere of dimension 2Nt , i.e.,

S =
{
(x1, x2, · · · , x2Nt ) : x2

1 + x2
2 + · · · + x2

2Nt
= 1
}

. (47)

By Lemma 1

Pr
(
‖D1/2Va‖ <

√
β
)

= Pr
(
‖D1/2Oa‖ <

√
β
)

. (48)

Let o‖a‖ ∼ Unif(S · ‖a‖), and note that Oa is equal in
distribution to o‖a‖. It follows that

Pr
(
‖D1/2Va‖ <

√
β
)

= Pr
(
‖D1/2o‖a‖‖ <

√
β
)

. (49)

Now the probability appearing on the r.h.s. of (49) has a
simple geometric interpretation. Define an ellipsoid with
axes xi = √

di · ‖a‖ and denote its surface area by
L(x1, x2, . . . , x2Nt ). Then, the r.h.s. of (49) is the ratio of the
part of the surface area of an ellipsoid that lies inside a sphere
of radius

√
β (denoted by CAPell(x1, x2, . . . , x2Nt )) and the

total surface area of the ellipsoid. This is illustrated in Figure 4
for the case of two real dimensions. We may rewrite (49) as

Pr
(
‖D1/2o‖a‖‖ <

√
β
)

= |D1/2S · ‖a‖ ∩ √
βS|∣∣D1/2‖a‖S∣∣

= CAPell(x1, x2, . . . , x2Nt )

L(x1, x2, . . . , x2Nt )
. (50)

Neither the numerator nor the denominator of (50) has
a closed-form expression. In order to upper bound this
ratio, we upper bound the numerator CAPell(x1, x2, . . . , x2Nt)
and lower bound the denominator (the surface area of the
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ellipsoid). Using inequality [19, eq. 4.3] (see also inequal-
ity (57) and historical account in [20]), we have

L(x1, . . . , x2Nt ) > Vol(B2Nt (1))‖a‖2Nt

2Nt∏
i=1

√
di

2Nt∑
i=1

1

‖a‖√di

≥ Vol(B2Nt (1))‖a‖2Nt −12C 2√
dmin

� L(x1, x2, . . . , x2Nt ), (51)

where B2Nt (1) is a unit ball of dimension 2Nt , and

Vol(B2Nt (1)) = π Nt

	(1 + Nt )
(52)

is its volume.
As an upper bound for the numerator, we take the entire

surface area of a sphere of radius
√

β, which is given by

A2Nt (
√

β) = 2Nt
π Nt

	(1 + Nt )

√
β

2Nt −1
. (53)

We thus have

CAPell(x1, x2, . . . , x2Nt) ≤ A2Nt (
√

β)

� CAPell(
√

β). (54)

We may therefore bound (50) by

Pr
(
‖D1/2o‖a‖‖ <

√
β
)

≤ CAPell(
√

β)

L(x1, x2, . . . , x2Nt )
. (55)

Substituting (51), (54) into (55) yields
∑

a∈A(β,dmin;2Nt )

Pr
(
‖D1/2o‖a‖‖ <

√
β
)

≤
∑

a∈A(β,dmin;2Nt )

2Nt
π Nt

	(1+Nt )

√
β

2Nt −1

π Nt

	(1+Nt )
‖a‖2Nt −12C 2√

dmin

=
∑

a∈A(β,dmin;2Nt )

2Nt
√

β
2Nt −1

‖a‖2Nt −12C 2√
dmin

. (56)

Substituting β = 2
C−�C

Nt α(Nt ), we finally arrive at

Pr (RIF(D, V) < C − �C)

≤
∑

a∈A(β,dmin;2Nt )

Pr
(
‖D1/2o‖a‖‖ <

√
β
)

≤
∑

a∈A(β,dmin;2Nt )

2Nt

(
2

C−�C
Nt α(Nt )

)Nt −1/2

‖a‖2Nt −12C 2√
dmin

. (57)

�
The bound of Lemma 2 is depicted in Figure 5. Rather than
plotting the outage probability, its complement is depicted,
i.e., we plot the cumulative distribution function of the event
that the rate is achieved by IF. For given C and �C , Lemma 2
was numerically calculated over a grid of singular values.
For each such vector of singular values, summation was
performed over all a ∈ A(β, dmin; 2Nt ). The worst-case outage
probability over all vectors of singular values from the grid is
presented.

Fig. 5. Comparison of (worst-case) empirical results, Lemma 2 and
Theorem 1 for two transmit antennas and for various values of WI mutual
information.

In addition, empirical (Monte Carlo) results are also plotted.
For each vector of singular values, a large number of random
unitary matrices was drawn and the outage probability was
calculated. The integer matrix was derived using the LLL
algorithm.15 The worst case outage probability over all tested
(i.e., those belonging to the grid) singular values is presented.

As a further reference, the figure also depicts the universal
guaranteed gap-to-capacity derived in [4], which for the case
of Nt = 2 amounts to �C = 15.24 bits [4].16

While Lemma 2 provides an explicit bound on the outage
probability, in order to calculate it, one needs to go over all
diagonal matrices in D(C; 2Nt ) and for each diagonal matrix,
sum over all the relevant integer vectors in A(β, dmin; 2Nt ).
Hence, the bound can be evaluated only for moderate values
of capacity and for a small number of transmit antennas.
The following theorem provides (a looser) simple closed-form
bound. Furthermore, this bound does not depend on capacity
but rather only on the number of transmit antennas and the
gap-to-capacity.

Theorem 1: For any complex Gaussian MIMO channel with
Nt transmit antennas and with WI mutual information C, and
for Vc drawn from the CUE (inducing a real-valued linear pre-
processing matrix V), the outage probability of integer forcing
is upper bounded by

PWC
out,IF (C,�C) ≤ c(Nt )2−�C , (58)

where

c(Nt ) =
(

2Nt +
(

1 +√2Nt

)2Nt
)

Nt α(Nt )
Nt

π Nt

	(Nt + 1)
(59)

and

α(Nt ) = 2Nt + 3

4

(
2

π
	 (2 + Nt )

1/Nt

)2

. (60)

Thus, c(Nt ) is a constant that depends only on Nt .

15Advanced techniques are known (see, e.g., [21] and [22]) that can be used
to further improve the empirical results.

16This upper bound on the gap-to-capacity is guaranteed for a different
coding scheme than that considered in this paper, where space-time pre-
processing is employed. Nevertheless, it serves as a useful benchmark.
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Fig. 6. The performance guaranteed by Theorem 1 for Nt = 2, 3, 4
transmit antennas. The dashed lines correspond to the improvement provided
by Corollary 2.

Proof: See Appendix B. �
This bound is also depicted in Figure 5 for the case of

two transmit antennas. For other values of Nt , the bound is
depicted in Figure 6 (solid lines).17 Recall again that, for Nt =
2, 3, 4, we use the actual values of γ4 = √

2, γ6 = ( 64
3

)1/6

and γ8 = 2, rather than the bound of [18]. We note that when
the number of transmit antennas increases, the gap between
the theorem and the empirical results grows mainly due to the
penalty incurred in (36) from using the dual lattice.

B. Improved Upper Bounds
A close inspection of Theorem 1 reveals that there are two

main sources for looseness in the bound that may be further
tightened:

• Union bound - While there is an inherent loss in the
union bound, some terms in the summation (46) may be
completely dropped. See Corollary 1 below.

• Dual lattice - Bounding via the dual lattice induces a loss
reflected in (36). This may be circumvented for the case
of two transmit antennas, as accomplished (along with
other improvements) in Theorem 2 below.

We first tighten the union bound. As expressed in (45),
the event where the first of the successive minima is smaller
than

√
β is equivalent to going over all integer vectors and

checking whether any of them meet the norm condition.
However, going over all integer vectors is superfluous. In case
that an integer vector b ∈ A(β, dmin; 2Nt ) is an integer
multiple of another integer vector a ∈ A(β, dmin; 2Nt ), there
is no need to count both of them. Rather, it suffices to include
in the union bound only the event corresponding to a.

It follows that one may replace the set A(β, dmin; 2Nt )
appearing in the summation in (2) by a smaller set
B(β, dmin; 2Nt ) where

B(β, d; 2Nt )

�
{

a ∈ Z
2Nt : 0<‖a‖ <

√
β

d
and �0<c<1 s.t. ca ∈ Z

2Nt

}

(61)

as described by the next corollary.

17A slightly tightened version of Theorem 1, as described in Remark 6 in
Appendix B, is used to generate Figures 5 and 6.

Corollary 1: For any complex Gaussian MIMO channel
with Nt transmit antennas and for Vc drawn from the
CUE (inducing a real-valued linear pre-processing matrix V),
the outage probability of integer forcing is upper bounded by

Pr (RIF(D, V) < C − �C)

≤
∑

a∈B(β,dmin;2Nt )

2Nt

(
2

C−�C
Nt α(Nt )

)Nt −1/2

‖a‖2Nt −12C 2√
dmin

. (62)

where β = 2
C−�C

Nt α(Nt ).
A simpler restriction of the set A(β, d; 2Nt ), short of

reducing it to B(β, d; 2Nt ), is obtained by noting that D and V
are the real representations of complex matrices. Using the
notations of (10), the integer vector a may be viewed as the
real representation of the complex vector ac. Thus,

‖D1/2
c Vcac‖ = ‖D1/2Va‖. (63)

As multiplication of ac by {−1, j,− j} does not change the
value of ‖D1/2

c Vcac‖ (and equivalently, it does not change the
value of ‖D1/2Va‖), it suffices to include only one of these
members of A(β, d; 2Nt ) in the summation. Hence, a simple
multiplicative improvement may be obtained.

Corollary 2: For any complex Gaussian MIMO channel
with Nt transmit antennas and for Vc drawn from the
CUE (inducing a real-valued linear pre-processing matrix V),
the outage probability of integer forcing is upper bounded by

Pr (RIF(D, V) < C − �C)

≤ 1

4

∑
a∈A(β,dmin;2Nt )

2Nt β
Nt −1/2

‖a‖2Nt −12C 2√
dmin

, (64)

where β = 2
C−�C

Nt α(Nt ).
While the improvement of Corollary 1 depends on β (and

hence also on C), we may tighten Theorem 1 by invoking
Corollary 2 as shown by the dashed lines in Figure 6. For
a given value of C , we may combine the two corollaries.
Figure 7 shows the different bounds on the outage probability
for the case of a MIMO channel with two antennas and with
C = 14, where both corollaries are utilized for tightening
Lemma 2.

As mentioned above, there is an additional significant loss
due to using the dual lattice for deriving both Lemma 2
and Theorem 1. For the case of Nt = 2, this loss may be
circumvented by analyzing the performance of IF-SIC. When
using IF-SIC, (6) can be rewritten as

PWC
out,IF−SIC (C, C − �C)

= sup
D∈D(C;2Nt )

Pr (RIF−SIC(D, V) < C − �C) . (65)

The next lemma provides a bound on the outage probability
of IF-SIC.

Lemma 3: For any complex Gaussian MIMO channel with
Nt transmit antennas and with white-input mutual information
C > 1, i.e., D ∈ D(C; 2Nt ), and for Vc drawn from the
CUE (inducing a real-valued linear pre-processing matrix V),
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Fig. 7. Outage bounds for channels with Nt = 2 transmit antennas and with
WI mutual information C = 14 bits.

the outage probability of integer forcing with successive inter-
ference cancellation is upper bounded by

Pr (RIF−SIC(D, V) < C − �C)

≤
∑

a∈A(β,1/dmax;2Nt )

2π22−3/4(C+�C)

π2 ‖a‖3

2C

√
dmax

, (66)

where A(β, 1/dmax; 2Nt ) is defined in (42), β = 2−1/2(C+�C)

and for all �C > 1.
Proof: See Appendix C. �

Remark 5: Lemma 3 can be further tightened using
Corollary 1, i.e., by replacing A(β, 1/dmax; 2Nt ) with
B(β, 1/dmax; 2Nt ).

In a similar manner to the derivation of Theorem 1 using
Lemma 2, for IF-SIC, Lemma 3 leads to the following
theorem.

Theorem 2: For any complex Gaussian MIMO channel with
Nt transmit antennas and with white-input mutual information
C > 1, i.e., D ∈ D(C; 2Nt ), and for Vc drawn from the CUE
(inducing a real-valued linear pre-processing matrix V), the
outage probability of integer forcing with successive interfer-
ence cancellation is upper bounded by

PWC
out,IF−SIC (C,�C) ≤ 85π22−�C , (67)

for all �C > 1.
Proof: See Appendix C. �

Figure 7 depicts the improved bounds of Lemma 3
(incorporating the improvements provided by Corollary 1 and
Corollary 2) and Theorem 2 for a system employing IF-SIC
with Nt = 2.18

C. Lower Bound via Maximum-Likelihood Decoding

Beyond the upper bounds on performance derived thus
far, it is natural to compare the worst-case performance
attained by an IF receiver with that of an optimal maximum
likelihood (ML) decoder for the same randomly linear pre-
processed scheme but where each stream is coded using an

18A slightly tightened version of Theorem 2, as described in Remark 7 in
Appendix C, is used to generate Figure 7.

Fig. 8. Worst-case performance comparison between IF-SIC and joint ML
decoding, for the case of Nt = Nr = 2 antennas.

independent Gaussian codebooks. This provides a lower bound
on the worst-case outage probability of IF.

Consider a specific Nr ×Nt matrix Hc and let HS denote the
submatrix of HcPc formed by taking the columns with indices
in S ⊆ {1, 2, . . . , Nt }. For a joint ML decoder, the following
is the maximal rate achievable [8] over the considered MIMO
multiple-access channel:

RJOINT = min
S⊆{1,2,...,Nt }

Nt

|S| log det
(

INr + HSHH
S

)
. (68)

Note that since HS depends on the random linear pre-
processing matrix Pc, RJOINT is a random variable. The lower
bound is therefore obtained by taking the infimum of (68) over
all Hc in H(C; Nt ).

Figure 8 provides a comparison between the worst-case
empirical performance of IF-SIC and the (worst-case) empiri-
cal performance of the corresponding scheme with ML decod-
ing, for the case of Nt = Nr = 2. In both cases, CUE pre-
processing is applied. Thus, performance depends only on the
singular values of the channel and hence the outage probability
curves are the supremum of the outage probability over a grid
of (two) singular values.

As can be seen, the gap between IF and ML is quite small.
This suggests that most of the loss with respect to the WI
mutual information is due to the separate encoding of the data
streams (i.e., MIMO MAC) rather than the suboptimailty of
the IF receiver.

V. APPLICATION: UNIVERSAL GAP-TO-CAPACITY FOR

MULTI-USER CLOSED-LOOP MULTICAST USING P-IF

Closed-loop MIMO multicast is a scenario where a trans-
mitter equipped with Nt transmit antennas wishes to send the
same message to K users, where user i is equipped with Ni

antennas.
Even though channel state information is available at both

transmission ends, designing practical capacity-approaching
schemes for closed-loop MIMO multicast with K ≥ 3 users
is challenging as detailed in [23]. The outage bound derived
above suggests that pre-processed IF may be an attractive
practical closed-loop MIMO multicast scheme, allowing to
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obtain a small gap-to-capacity with space-only pre-processing.
Namely, we use the probabilistic method to establish the
existence of a pre-processing matrix guaranteeing a desired
gap-to-capacity.

We denote by Hc,i the Ni ×Nt channel matrix corresponding
to the i th user and by H = {Hc,i }K

i=1 the set of channels. The
received signal at user i is

yc,i = Hc,i xc + zc,i . (69)

We assume that channel state information (CSI) is available
at both transmission ends.

The multicast capacity is defined as the capacity of the
compound channel (69). It is attained by a Gaussian input
vector, where the mutual information is maximized over all
covariance matrices Qc satisfying Tr(Qc) ≤ Nt :

C(H) = max
Qc :Tr(Qc)≤Nt

min
Hc∈H

log det(INr ×Nr + HcQcHH
c ).

(70)

We assume without loss of generality that the input covariance
matrix is the identity matrix. We may do so since the covari-
ance shaping matrix Q1/2

c may be absorbed into the channel
by defining the effective channel Ĥc,i = Hc,i Q

1/2
c . Thus,

C(H) = min
i

log det(INr ×Nr + Ĥc,i ĤH
c,i )

= min
i

log det(INt ×Nt + ĤH
c,i Ĥc,i ). (71)

In other words, after finding the optimal covariance matrix Qc,
when it comes to the transmission scheme, it suffices to
consider WI transmission over the effective channels Ĥc,i .
With a slight abuse of notation, we use Hc,i to denote the
effective channel, i.e., we drop the hat. We note that for each
user i , there exists an αi ≥ 1 such that

Hc,i = αi H̆c,i . (72)

where
︸︸
H = {H̆}K

i=1 ∈ H(C(H); Nt ), (73)

i.e., {H̆}K
i=1 is contained in the (continuum) set of channels,

having the same capacity C(H). Further, αi can be interpreted
as excess SNR that user i enjoys, beyond the minimum it
needs in the multicast setting. Since the achievable rate of
IF is monotonically increasing in SNR, it follows that the
achievable rates over the set of channels H can only be higher

than over
︸︸
H, which we next lower bound.

Let us consider applying the random CUE pre-processed IF

scheme to the compound channel set
︸︸
H.19 Define Ai (R) as

the event where the pre-processing matrix Pc is such that IF
achieves a desired target R for user i

Ai (R) = {Pc : RIF(Hc,i · Pc) ≥ R
}
. (74)

We are interested in the probability of achieving the target rate
for all users, i.e., Pr (∩Ai (R)). Note that

Pr (∩Ai (R)) = 1−Pr
(
∩Ai (R)

)
= 1 − Pr

(
∪Ai (R)

)
. (75)

19We assume IF-SIC is used for Nt = 2 since it provides improved bounds.

Fig. 9. Guaranteed achievable rates (using upper bound on outage probability
stated in Corollary 1 of Lemma 3) with pre-processed IF for closed-loop
MIMO multicast transmission with two transmit antennas and with 2,3,4 users.

Applying the union bound, we get

Pr
(
∪Ai (R)

)
≤
∑

Pr
(

Ai (R)
)

(76)

and hence

Pr (∩Ai (R)) ≥ 1 −
∑

Pr
(

Ai (R)
)

. (77)

Define
︸ ︸
Ai (R) =

{
Pc : RIF(H̆c,i · Pc) ≥ R

}
. (78)

Since Pr

(︸ ︸
Ai (R)

)
is the probability of achieving the target

rate, whereas PWC
out,IF bounds the probability of the complement

event, we have

Pr (Ai (R)) ≥ Pr

(︸ ︸
Ai (R)

)
≥ 1 − PWC

out,IF (C(H), C − R) ,

(79)

or equivalently,

Pr
(

Ai (R)
)

= 1 − Pr (Ai (R)) ≤ PWC
out,IF (C(H), C − R) .

(80)

It follows that,

Pr (∩Ai (R)) ≥ 1 − K PWC
out,IF (C(H), C − R) . (81)

This provides a means to obtain a guaranteed achievable
transmission rate RWC−CL(H) for closed-loop linear pre-
processed IF. Namely, RWC−CL(H) is the maximum rate for
which

PWC
out,IF (C(H), C − R) ≤ 1

K
. (82)

Substituting (82) in (81) we get that for any R < RWC−CL(H)

Pr (∩Ai (R)) > 1 − K · 1

K
= 0. (83)

Thus, there must exist a linear pre-processing matrix Pc for
which a target rate R < RWC−CL(H) is achievable (via P-IF
transmission) for the compound channel (69).

Figure 9 depicts the corresponding upper bounds on the gap-
to-capacity for MIMO multicast with two transmit antennas,
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K = 2, 3, 4 users, and where C(H) = 14 bits. For calculating
the upper bound on the guaranteed gap-to-capacity, we use the
tightest bound on the outage probability we have developed
for Nt = 2 which is Corollary 1 of Lemma 3. We observe that

• For 2 users, a rate of 10.76 bits is guaranteed (gap
of 3.24 bits to capacity).

• For 3 users, a rate of 10.2 bits is guaranteed (gap
of 3.8 bits to capacity).

• For 4 users, a rate of 9.615 bits is guaranteed (gap
of 4.385 to capacity).

VI. CONCLUSION

We obtained explicit universal bounds for the outage prob-
ability of a transmission scheme employing random unitary
pre-processing at the transmitter side and integer-forcing
equalization at the receiver side. These bounds provide mean-
ingful performance guarantees for transmission over MIMO
channels that depend only on the channel’s mutual information
and number of transmit antennas. Nonetheless, simulations
suggest that there is still a considerable gap between the
obtained bounds and the true (worst-case) outage probability
of the examined scheme, calling for further work.

APPENDIX A
PROOF OF LEMMA 1

We start by expressing
∥∥D1/2Va

∥∥ equivalently in complex
notation. We note that a (which is a vector of 2Nt real integers)
can be viewed as the real representation of a complex vector ac

such that

a =
[

Re(ac)
Im(ac)

]
. (84)

Obviously, ‖a‖ = ‖ac‖.
With this notation, and since D and V are the real repre-

sentation of the complex matrices Dc and Vc, it follows that∥∥∥D1/2Va
∥∥∥ =

∥∥∥D1/2
c Vcac

∥∥∥ . (85)

Now since Vc is drawn from the CUE, the distribution of∥∥∥D1/2
c Vcac

∥∥∥ is equal to that of
∥∥∥D1/2

c Vc
[
1 0 ... 0

]T ‖ac‖
∥∥∥.

Note also that∥∥∥D1/2
c Vc

[
1 0 ... 0

]T ‖ac‖
∥∥∥

=
∥∥∥D1/2

c Vc
[
1 0 ... 0

]T ∥∥∥ ‖a‖
=
∥∥∥D1/2

c vc,1

∥∥∥ ‖a‖. (86)

where vc,1 is the first column of Vc.
As described in [24], vc,1 is uniformly distributed over the

surface of the complex unit sphere. Such a vector can be gener-
ated by taking a vector with zero-mean i.i.d. complex Gaussian
components and scaling it by its norm. The components of
such a vector can be expressed as

vc,1 = Gc,i√∑Nt
i=1 |Gc,i |2

, (87)

where Gc,i are zero-mean i.i.d. complex circularly symmetric
Gaussian random variables.

Similarly, a vector taken from a CRE matrix is uniformly
distributed over the surface of the real unit sphere and it
can be generated by taking a vector with zero-mean i.i.d.
real Gaussian components and scaling it by its norm. The
components of such a vector can be expressed as

or,1 = Gr,i√∑Nt
i=1 G2

r,i

, (88)

where Gr,i are zero-mean i.i.d. real Gaussian random
variables.

We may rewrite (86) over the reals as∥∥∥∥D1/2
[

Re(vc,1)
Im(vc,1)

]∥∥∥∥ ‖a‖. (89)

Now, since the real and imaginary part of the complex
Gaussian components are i.i.d. real Gaussian random variables,
it follows that the resulting 2Nt × 1 vector

o =
[

Re(vc,1)
Im(vc,1)

]
(90)

is of the form of (88). Hence, it is uniformly distributed over
the surface of the (2Nt -dimensional) real unit sphere and thus
it can be interpreted as the first vector from a real matrix O
drawn from CRE ensemble. Therefore∥∥∥D1/2o

∥∥∥ ‖a‖ (91)

which equals (86) has the same distribution as∥∥∥D1/2Oa
∥∥∥ . (92)

It follows that
∥∥D1/2Va

∥∥ and
∥∥D1/2Oa

∥∥ have the same
distribution.

APPENDIX B
PROOF OF THEOREM 1

From Lemma 2, we have

Pr(RIF (D, V) < C − �C)

≤
∑

a∈A(β,dmin;2Nt )

2Nt

(
2

C−�C
Nt α(Nt )

)Nt −1/2

‖a‖2Nt −12C 2√
dmin

, (93)

where A(β, dmin; 2Nt ) and β are defined in (42) and (44).
Reverting back to (56) and noting that

A(β, dmin; 2Nt ) ⊆
{

a ∈ Z
2Nt : ‖a‖ ≤

⌊√
β

dmin

⌋
+ 1

}
,

this summation can be written as

∑
a∈A(β,dmin;2Nt )

2Nt
√

β
2Nt −1

‖a‖2Nt −12C 2√
dmin

≤

⌊√
β

dmin

⌋
∑
k=0

∑
k<‖a‖≤k+1

2Nt
√

β
2Nt −1

k2Nt −12C 2√
dmin

. (94)

Denoting η = η(Nt , β, dmin, C) = 2Nt
√

β
2Nt −1

2C 2√
dmin

, we apply

[25, Lemma 1] (a bound for the number of integer vectors
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contained in a ball of a given radius). Using this bound while
noting that when ‖a‖ = 1 there are exactly 2Nt integer
vectors, the right hand side of (94) may be further bounded
as

≤ ηVol(B2Nt (1)) ×

⎡
⎢⎢⎣2Nt +

⌊√
β

dmin

⌋
∑
k=1

×
⎛
⎜⎝

(
k + 1 +

√
2Nt
2

)2Nt −
(

max
(

k −
√

2Nt
2 , 0

))2Nt

k2Nt −1

⎞
⎟⎠

⎤
⎥⎥⎦,

(95)

where we note that (95) trivially holds when
⌊√

β
dmin

⌋
= 0

since A(β, dmin; 2Nt ) is the empty set in this case. Henceforth

we assume that
⌊√

β
dmin

⌋
≥ 1. Further, the right hand side

of (95) can be rewritten as

ηVol(B2Nt (1))

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2Nt︸︷︷︸
I

+

⌊√
2Nt
2

⌋
∑
k=1

(
k + 1 +

√
2Nt
2

)2Nt

k2Nt −1

︸ ︷︷ ︸
II

+

⌊√
β

dmin

⌋
∑

k=
⌊√

2Nt
2

⌋
+1

[(
k + 1 +

√
2Nt
2

)2Nt −
(

k −
√

2Nt
2

)2Nt
]

k2Nt −1

︸ ︷︷ ︸
III

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(96)

We search for c1 and c2 (independent of k) such that

(
k + 1 +

√
2Nt

2

)2Nt

≤ c1k2Nt −1 (97)

for 1 ≤ k ≤
⌊√

2Nt
2

⌋
, and

[(
k + 1 +

√
2Nt

2

)2Nt

−
(

k −
√

2Nt

2

)2Nt
]

≤ c2k2Nt −1

(98)

for k ≥ 1, since it will then follow that

I I + I I I ≤

⌊√
β

dmin

⌋
∑
k=1

max(c1, c2) (99)

We note that since (again assuming
⌊√

β
dmin

⌋
≥ 1)

2Nt ≤

⌊√
β

dmin

⌋
∑
k=1

2Nt , (100)

it will thus further follow that

I + I I + I I I ≤

⌊√
β

dmin

⌋
∑
k=1

[2Nt + max(c1, c2)]

=
⌊√

β

dmin

⌋
[2Nt + max(c1, c2)] . (101)

To establish (97) and (98), we first show that we may take

c1 =
(

1 +√2Nt

)2Nt
. (102)

In other words, we need to establish that
(

k + 1 +
√

2Nt
2

)2Nt

k2Nt −1 ≤
(

1 +√2Nt

)2Nt
(103)

holds for 1 ≤ k ≤
⌊√

2Nt
2

⌋
. Since k ≥ 1, we have

(
k + 1 +

√
2Nt
2

)2Nt

k2Nt −1 ≤
(

k + 1 +
√

2Nt

2

)2Nt

. (104)

Now, for k ≤
√

2Nt
2 , we have

(
k + 1 +

√
2Nt

2

)2Nt

≤
(

1 +√2Nt

)2Nt
. (105)

Hence, (97) indeed holds with c1 = (1 + √
2Nt
)2Nt .

Next, we show that we may take

c2 =
[(

2 +
√

2Nt

2

)2Nt

−
(

1 −
√

2Nt

2

)2Nt
]

. (106)

Thus, we need to show that for k ≥ 1, the following holds

1

k2Nt −1

[(
k + 1 +

√
2Nt

2

)2Nt

−
(

k −
√

2Nt

2

)2Nt
]

≤
[(

2 +
√

2Nt

2

)2Nt

−
(

1 −
√

2Nt

2

)2Nt
]

. (107)

Using the binomial expansion

1

k2Nt −1

[(
k + 1 +

√
2Nt

2

)2Nt

−
(

k −
√

2Nt

2

)2Nt
]

=
2Nt∑
i=0

(
2Nt − i

i

)
k1−i

[(
1 +

√
2Nt

2

)i

−
(

−
√

2Nt

2

)i
]

=
2Nt∑
i=1

(
2Nt − i

i

)
k1−i

[(
1 +

√
2Nt

2

)i

−
(

−
√

2Nt

2

)i
]

(108)

≤
2Nt∑
i=1

(
2Nt − i

i

)[(
1 +

√
2Nt

2

)i

−
(

−
√

2Nt

2

)i
]

(109)

=
[(

2 +
√

2Nt

2

)2Nt

−
(

1 −
√

2Nt

2

)2Nt
]

, (110)

where (109) follows since each of the summands in (108)
is monotonically decreasing in k (when k ≥ 1 and i ≥ 1).
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Thus, (98) indeed holds when taking c2 as defined in (106).
Hence, we have established our choices for c1 and c2.

Now, since for Nt ≥ 2 we have

c2 =
[(

2 +
√

2Nt

2

)2Nt

−
(

1 −
√

2Nt

2

)2Nt
]

≤
(

2 +
√

2Nt

2

)2Nt

≤
(

1 +√2Nt

)2Nt

= c1. (111)

Recalling (101), it follows that

I + I I + I I I ≤
⌊√

β

dmin

⌋(
2Nt +

(
1 +√2Nt

)2Nt
)

.

(112)

Applying (112) to (96), we get

∑
a∈A(β,dmin;2Nt )

2Nt
√

β
2Nt −1

‖a‖2Nt −12C 2√
dmin

≤
⌊√

β

dmin

⌋
ηVol(B2Nt (1)) ·

(
2Nt +

(
1 +√2Nt

)2Nt
)

=
⌊√

β

dmin

⌋
2
(

2Nt + (1 + √
2Nt
)2Nt

)
Nt

√
β

2Nt −1

2C 2√
dmin

× Vol(B2Nt (1))

≤
2
(

2Nt +
(
1+√

2Nt
)2Nt

)
Nt

√
β

2Nt −1

2C 2√
dmin

√
β

dmin
Vol(B2Nt (1))

=
(

2Nt + (1 + √
2Nt
)2Nt

)
Ntβ

Nt

2C
Vol(B2Nt (1)). (113)

Further, setting β = 2
C−�C

Nt α(Nt ), we have

Pr (RIF (D, V) < C − �C)

≤
(

2Nt + (1+√
2Nt
)2Nt

)
Nt

(
2

C−�C
Nt α(Nt )

)Nt

2C
Vol(B2Nt (1))

=
(

2Nt + (1 + √
2Nt
)2Nt

)
Nt 2C−�Cα(Nt )

Nt

2C
Vol(B2Nt (1))

=
(

2Nt +
(

1 +√2Nt

)2Nt
)

Ntα(Nt )
Nt

π Nt

	(Nt + 1)
2−�C .

(114)

Hence,

Pr (RIF (D, V) < C − �C) ≤ c(Nt )2
−�C (115)

where

c(Nt ) =
(

2Nt +
(

1 +√2Nt

)2Nt
)

Nt α(Nt )
Nt

π Nt

	(Nt + 1)
(116)

is a constant that depends only on Nt . We note that (116) does
not depend on D and hence it holds also for the supremum
over D ∈ D(C; 2Nt ). Recalling (31), we have

PWC
out,IF (C,�C) = sup

D∈D(C;2Nt )

Pr (RIF(D, V) < C − �C)

≤ c(Nt )2−�C (117)

which concludes the proof.
Remark 6: It can be shown that the term I (i.e., the term

2Nt ) in (96) can be dropped from c(Nt ) and further that the

choice c1 =
(

2 +
√

2Nt
2

)2Nt
also satisfies (97). Combining

these two observations, (116) can be further tightened to

c(Nt ) =
(

2 +
√

2Nt

2

)2Nt

Nt α(Nt )
Nt

π Nt

	(Nt + 1)
. (118)

Figures 5 and 6 use this tighter bound.

APPENDIX C
TIGHTER BOUNDS FOR Nr × 2 CHANNELS: PROOF

OF LEMMA 3 AND THEOREM 2

We consider the performance of an IF-SIC receiver over
Nr × 2 channels. Thus, we now have 2Nt = 4.

As mentioned in Section III-C, when using complex linear
pre-processing matrices, the rates of both IF and IF-SIC come
in pairs. Denote

R1,IF(D, V) = R1,IF(D, V) = R2,IF(D, V) (119)

and

R2,IF(D, V) = R3,IF(D, V) = R4,IF(D, V). (120)

where Rm,IF(D, V) is the rate of the mth equation
(corresponding to the mth row of A) as defined in (19), where
we implicitly assume that A is the optimal matrix for IF.
Similarly, denote

R1,IF−SIC(D, V) = R1,IF−SIC(D, V) = R2,IF−SIC(D, V)

(121)

and

R2,IF−SIC(D, V) = R3,IF−SIC(D, V) = R4,IF−SIC(D, V).

(122)

We note that the (optimal) integer matrix A used for IF
in (119)-(120) is in general different than the (optimal)
matrix A used for IF-SIC in (121)-(122). Nonetheless, when
applying IF-SIC, one decodes first the equation with the
highest SNR. Since for this equation SIC has no effect it
follows that the first row of A is the same in both cases and
hence

R1,IF−SIC(D, V) = R1,IF(D, V). (123)

From [12, Sec. III.A], we have

4∑
i=1

Ri,IF−SIC(D, V) = C − log | det(A)|. (124)
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Furthermore, by [12, Th. 3], the optimal integer matrix A for
IF-SIC is unimodular (i.e., has determinant 1 or -1). Hence,

4∑
i=1

Ri,IF−SIC(D, V) = C. (125)

Since we use IF-SIC with equal rate per stream, we have the
following

RIF−SIC(D, V) = 4 min(R1,IF−SIC(D, V), R2,IF−SIC(D, V)).

(126)

Substituting (123) into (125), we have

R2,IF−SIC(D, V) = C

2
− R1,IF(D, V). (127)

Now, from [11, Th. 3] (with equivalent four real dimensions),
we have

2(R1,IF(D, V) + R2,IF(D, V)) ≥ C − 4

R1,IF(D, V) + R2,IF(D, V) ≥ C − 4

2
. (128)

Since R1,IF(D, V) ≥ R2,IF(D, V), it follows that

R1,IF(D, V) ≥ C − 4

4
. (129)

We conclude that

RIF−SIC(D, V) = 4 min
(

R1,IF−SIC(D, V), R2,IF−SIC(D, V)
)

= 4 min

(
R1,IF(D, V),

C

2
− R1,IF(D, V)

)

≥ 4 min

(
C − 4

4
,

C

2
− R1,IF(D, V)

)

= min
(

C − 1, 2C − 4R1,IF(D, V)
)

. (130)

Henceforth, we analyze the outage probability for C > 1
and target rates that are no greater than C − 1, so that the
inequality 2C − 4R1,IF(D, V) < C − 1 is satisfied. Thus,
we consider gap-to-capacity values such that �C > 1. Our
goal is to bound

Pr (RIF−SIC(D, V) < C − �C)

= Pr

(
2C − 4

1

2
log

(
1

λ2
1(�)

)
< C − �C

)

= Pr

(
−2 log

(
1

λ2
1(�)

)
< −(C + �C)

)

= Pr
(
λ2

1(�) < 2−1/2(C+�C)
)

. (131)

We are now ready to prove Lemma 3 and Theorem 2. Let
β = 2−1/2(C+�C). We wish to bound (131), or equivalently

Pr
(
λ2

1(�) < β
)

= Pr
(
λ1(�) <

√
β
)

. (132)

for a given matrix D. Note that the event λ1(�) <
√

β is
equivalent to the event

⋃

a∈Z4\{0}
||D−1/2VT a|| <

√
β. (133)

Applying the union bound yields

Pr
(
λ1(�) <

√
β
)

≤
∑

a∈Z4\{0}
Pr
(
||D−1/2VT a|| <

√
β
)

.

(134)

Note that if ||a||√
dmax

>
√

β, we have

Pr
(
||D−1/2VT a|| <

√
β
)

= 0. (135)

Therefore, using the notation of (42), the set of relevant
vectors a is

A(β, 1/dmax; 4) =
{

a ∈ Z
4 : 0 < ||a|| <

√
βdmax

}
.

(136)

It follows from (134) and (135) that

Pr
(
λ1(�) <

√
β
)

≤
∑

a∈A(β,1/dmax;4)

Pr
(
‖D−1/2VT a‖ <

√
β
)

. (137)

We now apply a similar derivation to that of Section IV.
Applying Lemma 1, we have

Pr
(
‖D−1/2VT a‖ <

√
β
)

= Pr
(
‖D−1/2OT a‖ <

√
β
)

.

(138)

where O is drawn from the CRE. Hence, we can apply the
same geometric interpretation as in Section IV and interpret
Pr
(‖D−1/2OT a‖ <

√
β
)

as the ratio of the surface area of the
four-dimensional ellipsoid inside a ball with radius

√
β and

the surface area of this ellipsoid. The axes of this ellipsoid are
defined as

xi = ‖a‖√
di

. (139)

For the case of four real dimensions, (50) can be written as

∑
a∈A(β,1/dmax;4)

Pr
(
‖D−1/2o‖a‖ <

√
β
)

=
∑

a∈A(β,1/dmax;2Nt )

CAPell

L(x1, x2, x3, x4)
(140)

where

CAPell < A4(
√

β) = 4
π2

2

√
β

3 � CAPell, (141)

and

L(x1, x2, x3, x4) >
π2

2

‖a‖4

∏4
i=1

√
di

(
2
√

dmin

‖a‖ + 2
√

dmax

‖a‖
)

≥ π2 ‖a‖3

2C

(√
dmax

)
� L(x1, x2, x3, x4).

(142)
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Substituting (141) and (142) in (140), we obtain
∑

a∈A(β,1/dmax;4)

CAPell

L(x1, x2, x3, x4)

<
∑

a∈A(β,1/dmax;4)

CAPell

L(x1, x2, x3, x4)

=
∑

a∈A(β,1/dmax;4)

2π2√β
3

π2 ‖a‖3

2C

(√
dmax

) . (143)

Recalling that β = 2−1/2(C+�C), we get that for �C < 1

Pr (RIF−SIC(D, V) < C − �C)

≤
∑

a∈A(β,1/dmax;4)

2π22−3/4(C+�C)

π2 ‖a‖3

2C

(√
dmax

) , (144)

which proves Lemma 3.
To establish Theorem 2, we follow the footsteps of the proof

of Theorem 1 (noting that now 2Nt = 4) to obtain
∑

a∈A(β,1/dmax;4)

Pr
(
‖D−1/2o‖a‖ <

√
β
)

≤
∑

a∈A(β,1/dmax;4)

2π2√β
3

π2 ‖a‖3

2C

√
dmax

=
∑

a∈A(β,1/dmax;4)

2
√

β
32C

‖a‖3
√

dmax

= 2
√

β
32C

√
dmax

√
βdmax�∑
k=0

∑
k<‖a‖≤k+1

1

k3

≤ 2
√

β
32C

√
dmax

⎡
⎣2Nt +

√
βdmax�∑
k=1

(k + 2)4 − (k − 1)4

k3

⎤
⎦

≤ 2
√

β
32C

√
dmax

⎡
⎣4 +

√
βdmax�∑
k=1

81k3

k3

⎤
⎦

=
√

βdmax�∑
k=1

√
β

32Cπ285√
dmax

≤
√

β
32Cπ285

√
βdmax√

dmax

≤ β22Cπ285. (145)

As (145) does not depend on D, it follows that the bound
holds also for the supremum over D ∈ D(C; 4). Now since
β = 2−1/2(C+�C), we get

PWC
out,IF−SIC (C,�C) ≤ 85 · π2 · 2C 2−C−�C

= 85 · π2 · 2−�C . (146)

Remark 7: Similar to Remark 6 in Appendix B, (146) can
be further tightened to

PWC
out,IF−SIC (C,�C) ≤ 81 · π2 · 2−�C . (147)

ACKNOWLEDGEMENT

The authors are deeply grateful to Or Ordentlich whose
work laid the foundation for this paper and for many fruitful
discussions.

REFERENCES

[1] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun, vol. 10, no. 6, pp. 585–595, Nov. 1999.

[2] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge, U.K.: Cambridge Univ. Press, 2005.

[3] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a
multiple-antenna channel,” IEEE Trans. Commun., vol. 51, no. 3,
pp. 389–399, Mar. 2003.

[4] O. Ordentlich and U. Erez, “Precoded integer-forcing universally
achieves the MIMO capacity to within a constant gap,” IEEE Trans.
Inf. Theory, vol. 61, no. 1, pp. 323–340, Jan. 2015.

[5] P. Elia, K. Kumar, S. Pawar, P. Kumar, and H.-F. Lu, “Space-time codes
meeting the diversity-multiplexing gain tradeoff with low signalling
complexity,” IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 3869–3884,
Sep. 2006.

[6] E. G. Larsson, “Constellation randomization (CoRa) for outage
performance improvement on MIMO channels,” in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), vol. 1. Nov./Dec. 2004,
pp. 386–390.

[7] Y. Li, C. N. Georghiades, and G. Huang, “Transmit diversity over
quasi-static fading channels using multiple antennas and random signal
mapping,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1918–1926,
Nov. 2003.

[8] J. Zhan, B. Nazer, U. Erez, and M. Gastpar, “Integer-forcing linear
receivers,” IEEE Trans. Inf. Theory, vol. 60, no. 12, pp. 7661–7685,
Dec. 2014.

[9] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing
interference through structured codes,” IEEE Trans. Inf. Theory, vol. 57,
no. 10, pp. 6463–6486, Oct. 2011.

[10] O. Ordentlich, J. Zhan, U. Erez, M. Gastpar, and B. Nazer, “Practical
code design for compute-and-forward,” in Proc. IEEE Int. Symp. Inf.
Theory, Jul. 2011, pp. 1876–1880.

[11] O. Ordentlich, U. Erez, and B. Nazer, “The approximate sum capacity
of the symmetric Gaussian K -user interference channel,” IEEE Trans.
Inf. Theory, vol. 60, no. 6, pp. 3450–3482, Jun. 2014.

[12] O. Ordentlich, U. Erez, and B. Nazer, “Successive integer-forcing and
its sum-rate optimality,” in Proc. 51st Annu. Allerton Conf. Commun.,
Control, Comput. (Allerton), Oct. 2013, pp. 282–292.

[13] M. Mehta, Random Matrices and the Statistical Theory of Energy Level.
San Diego, CA, USA: Academic, 1967.

[14] F. Mezzadri. (2006). “How to generate random matrices from the clas-
sical compact groups.” [Online]. Available: https://arxiv.org/abs/math-
ph/0609050

[15] A. Edelman and N. R. Rao, Random Matrix Theory, vol. 14. Cambridge,
U.K.: Cambridge Univ. Press, 2005.

[16] J. C. Lagarias, H. W. Lenstra, Jr., and C.-P. Schnorr, “Korkin-Zolotarev
bases and successive minima of a lattice and its reciprocal lattice,”
Combinatorica, vol. 10, no. 4, pp. 333–348, 1990.

[17] W. Banaszczyk, “New bounds in some transference theorems in the
geometry of numbers,” Math. Ann., vol. 296, no. 1, pp. 625–635, 1993.

[18] H. F. Blichfeldt, “The minimum value of quadratic forms, and the closest
packing of spheres,” Math. Ann., vol. 101, no. 1, pp. 605–608, 1929.

[19] B. C. Carlson, “Some inequalities for hypergeometric functions,” Proc.
Amer. Math. Soc., vol. 17, no. 1, pp. 32–39, 1966.

[20] G. J. Tee, “Surface area and capacity of ellipsoids in n dimensions,”
New Zealand J. Math., vol. 34, pp. 165–198, Oct. 2005.

[21] A. Sakzad, J. Harshan, and E. Viterbo, “On complex LLL algorithm
for integer forcing linear receivers,” in Proc. Austral. Commun. Theory
Workshop (AusCTW), Jan. 2013, pp. 13–17.

[22] R. Fischer, M. Cyran, and S. Stern, “Factorization approaches in lattice-
reduction-aided and integer-forcing equalization,” in Proc. Int. Zurich
Seminar Commun., 2016.

[23] A. Khina, I. Livni, A. Hitron, and U. Erez, “Joint unitary triangulariza-
tion for Gaussian multi-user MIMO networks,” IEEE Trans. Inf. Theory,
vol. 61, no. 5, pp. 2662–2692, May 2015.

[24] A. Narula, M. D. Trott, and G. W. Wornell, “Performance limits of
coded diversity methods for transmitter antenna arrays,” IEEE Trans.
Inf. Theory, vol. 45, no. 7, pp. 2418–2433, Nov. 1999.

[25] O. Ordentlich and U. Erez, “A simple proof for the existence of ‘good’
pairs of nested lattices,” IEEE Trans. Inf. Theory, vol. 62, no. 8,
pp. 4439–4453, Aug. 2016.



2790 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 4, APRIL 2018

Elad Domanovitz received the B.Sc. degree (cum laude) and the M.Sc.
degree in 2005 and 2011, respectively, in electrical engineering from Tel Aviv
University, Israel. He is currently working toward the Ph.D. degree at Tel Aviv
University.

Uri Erez (M’09) was born in Tel-Aviv, Israel, on October 27, 1971.
He received the B.Sc. degree in mathematics and physics and the M.Sc. and
Ph.D. degrees in electrical engineering from Tel-Aviv University in 1996,
1999, and 2003, respectively. During 2003-2004, he was a Postdoctoral
Associate at the Signals, Information and Algorithms Laboratory at the
Massachusetts Institute of Technology (MIT), Cambridge. Since 2005, he
has been with the Department of Electrical Engineering-Systems at Tel-Aviv
University. His research interests are in the general areas of information
theory and digital communication. He served in the years 2009-2011 as
Associate Editor for Coding Techniques for the IEEE TRANSACTIONS ON
INFORMATION THEORY.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


